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An instability in a hard-disc system in a narrow box 

K W WojciechowskitQ, P Pieranskit and J Maieckit 
+ International Centre for Theoretical Physics, Trieste, Italy 
$ Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland 

Received 13 September 1982, in final form 9 December 1982 

Abstract. It i s  shown that a system of N ( N + m )  hard discs (of diameter g )  in a narrow 
box, of width D (D < J 3 a )  and length L =NI, is unstable for a certain range of D and 
I when D is variable. 

1. Introduction 

It is well known (Van Hove 1949) that the second derivative of the Helmholtz free 
energy against volume for a system in the thermodynamic limit cannot be negative. 
In other words, the pressure-volume isotherm of such a system cannot include any 
part with a positive slope. However, it is also known (Alder and Wainwright 1960, 
Alder et a1 1963, Hoover and Alder 1967) that van der Waals-like loops may occur 
in the equation of state of a small system (number of particles N - 10’). This leads 
to the conclusion that the loop in the isotherm is connected with constraints imposed 
on a system by its boundaries (some configurations of molecules are excluded). Mayer 
and Wood (1965), studying periodic systems displaying a first-order phase transition 
in the thermodynamic limit, showed that the interfacial tension between two phases 
should give a loop in the equation of state at finite N. In this paper it is shown that 
a loop may be observed also in a system with infinitely large N if the system is a thin 
two-dimensional layer (strip). An example is the hard-disc system in a narrow box 
(Wojc&chowski et a1 1982) which is considered here. The box is a rectangle of width 
D s J3 U parallel to the y axis and a length L =NI parallel to the x axis, periodic 
boundary conditions being imposed in the y direction. It is proved that if the 
two-dimensional volume of the box is changed keeping N, L and T (temperature), 
constant (that is only D is changed) then the transverse pressure pD is an increasing 
function of the two-dimensional volume for a certain range of D and 1 (see the 
following section and Wojciechowski et a1 1982). 

2. Basic formulae 

2.1. Preliminaries 

The Helmholtz free energy per particle cp (T;  1 ;  D )  for a hard-disc system, contained 
in a narrow box of width D and length per particle I, has been calculated (Wojciechowski 
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et a1 1982). It is convenient to repeat this result: 

q ( T ;  ~;D)=kg~{g[l;s(l;D);D]-1n(2A2)} ( 1 )  

o =  ( a / a s ) g ( l ;  S ;  D)],=,, ( 2 )  

A = (2.rrmkBT/h2)’/’ g ( 1 ;  S ;  D ) =  h( s ;  D ) -  IS ( 3 )  

h ( s ;  D ) =  -ln[Ro(s; D ) / s ]  (4) 

Ri E Ri(s;  D )  = (U’ -x’)~/’ exp[-s(cT’-x’)’’*] dx. ( 5 )  

where the real and positive function S D  = s ( 1 ;  D )  is given by 

where s is in general complex and 

loD” 
Equation ( 2 )  can be written in the form 

I=&’&’ +Rl(sD; D ) / R ~ ( s D ;  D )  (6) 

since SD = f L / k B T ,  where f L  is the force elongating the box (‘longitudinal’ force). 
Equation (6) will then express the force in terms of other parameters in the system, 
that is T, I ,  D. For simplicity we will write s in place of sD bearing in mind that s 
is now real and positive. It is clear from the form of (6) that it would be convenient 
to treat s as an independent variable. This can be achieved when, instead of the 
Helmholtz free energy cp (T, I ;  D ) ,  one introduces an analogue of the Gibbs free energy 
(free enthalpy) G(T;  s ;  D ) :  

(7) 

This change enables one to find other properties of the system easily. For example, 
the transverse force per particle f D  (widening the box) can be calculated as: 

$ ( T ;  s ;  D )  = q [ T ;  I(s; D ) ;  D]+kBTsl(s;  D )  = kBT[h(S; D)-ln(2A2)]. 

fD=-acp/aD =-a*/aD = - k ~ T a h / a D  = f k ~ T  exp[-s(u2-~’)’~’] /R0(~;  D ) .  (8) 

The ‘longitudinal’ and ‘transverse’ pressures p L  and pD are defined as 

P L  = fL/D P D  = f D / l  (9) 

P = : ( P L + P D ) .  (10) 

and the thermodynamic pressure p is given by 

2.2. Second derivatives 

In this section second derivatives of the Helmholtz free energy against two-dimensional 
volume are analysed for the following three simple cases: 

( a )  D = constant, 1 variable; 
( b )  D variable, 1_= constant; 
( c )  a = I/D = J 3 / 2 ,  a = ID variable. 

A negative value of the derivative for some range of 1 and D is equivalent to the 
existence of a ‘loop’ in the pressure-volume isotherm. 

+ Symbols of partial derivatives without brackets mean differentiation against direct arguments of a function. 
For example, dcp/aD means (dcpplJD),, and dt+b/dD means (dt+b/dD),,,. See also Wojciechowski el a1 (1982). 
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In case ( a )  for s E (0 ;  00) one obtains 

The last inequality results from 

In case ( b )  the following equalities hold: 

=“[“+-(”)j a2h =7[z+(G)2 keT a2h a2h (-:)-‘I. (13) 
i 2  aD2 asaD aD 

In view of (1 1) and since for s E (0;  CO) 

a2h 1 a r ( s ;  D )  -- - -- - [ r ( s ;  D ) / R o ] = - [ R o ( a 2 - D 2 / 4 ) 1 / 2 - R 1 ]  
asaD 2 as 2R 0 

D / 2  
- r ( s ; D )  - lo [la2 - D2/4)’/’ - (a2 - x 2 ) 1 / 2 ]  exp [-s (a2 - x * ) I  dr < 0 (14) 

where r ( s ;  D )  = exp [ - ~ ( u ~ - D ~ / 4 ) ’ / ~ ] ,  then the second term in the square brackets 
in (13) is always positive. On the other hand, the first term 

a2h/aD2 = -+(a/aD)[r(s; D ) / R o ]  = a [ r ( s ;  D ) / R i ] [ r ( s ;  D ) - : S D ( ( T ~ - - D ~ I ~ ) - ” ~ R O ~  
(15) 

is positive for s + O + ,  while for s +CO it becomes negative. The last conclusion can 
be drawn from analysis of the asymptotic expansion (see Fedorjuk 1977 p 35) 

1 
Ro(s;  D ) = - r ( s ;  D )  -+.  . . 

S 

The region in which expression (15) is negative is shown in figure 1. From a formal 
point of view one can say that D < U in figure 1 (see Wojciechowski et ui 1982) negates 
the hard-disc concept. It is worth noting, however, that a hard-disc system in a y 
periodic box of width D ( D  G J3) is very similar to a hard-disc system in a y hard-wall 
box of width D’ = a + D/2 .  The similarity is clearly visible when one analyses close- 
packed structures of both systems and their thermodynamic properties in the one- 
dimensional limit, that is D + 0, D‘+a.  

Since, as mentioned above, the second term in the square brackets in (13) is positive, 
the region in which the whole bracket is negative is reduced considerably (see figure 2) .  
Plots of (a2q/au2)1,T andp, againstD for i = 1 . k  are presented in figure 3. The positive 
slope of the latter for D >D* is clearly visible. 



2200 K W Wojciechowski, P Pieratiski and JMalecki 

l o /  

0 : 

2.0 

1.5 

1.0 

0.5 

ibl 

1 1 I 1 
6 

DlO 

0 0.5 1.0 1 . 5 6  0 0.5 1 .O 

Figure 1. Diagram of the sign of a2h/as2 :  ( a )  D-s diagram; ( b )  D-I diagram. The thick 
curve in ( 6 )  represents the closest packing limit-states below this line are not accessible 
for the system. 
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Figure 2. Region of negativity of [ J 2 q / J a 2 ) , , ~ .  The thick curve represents the closest 
packing limit. 

In case ( c )  the derivative (a2q/aa2),,T is calculated. In view of the relations 

a =ID =aD2 (17) 
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Figure 3. pD (full curve) and (82q/8a2) , ,T  = - (8pD/8a ) I ,T  (broken curve) against D at 
constant I = 1.50. 

one obtains, after simple calculations, 

A graph of the function at a! = J3/2 is shown in figure 4. It is clear that in this case 
(as in case ( a ) )  the derivative is positive. 

0 1  - 
1 2 3 

alao 
- 

Figure 4. ( d * q / i ~ a ~ ) , . ~  against two-dimensional volume a for a = fJ3 (ao = $&a’). 

3. Discussion and conclusions 

The necessary condition of mechanical internal stability of a bulk system is a positive 
value of the second derivative of its Helmholtz free energy against volume. This 
follows immediately from the second law of thermodynamics (,see for example, Gug- 
genheim 1967) when one assumes that the Helmholtz free energy of the system is an 
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additive function of volume. The last assumption means that if the system is divided 
into two macroscopic parts, the sum of the free energies of both sub-systems is equal 
to the free energy of the whole, that is a correction caused by interaction of both 
parts can be neglected. This assumption is not generally true for thin layers (strips). 
Only when a layer (strip) is divided in parts transversely (the cut dividing the layer 
(strip) is parallel to its thickness (width)) the interaction of both parts can be neglected. 
Then following Guggenheim one obtains ( ~ 3 ~ q / & z ~ ) ~ , ~  > 0 for the system studied here 
(case (a ) ) .  When a layer (strip) is divided ‘longitudinally’ (the cut is perpendicular to 
the thickness (width)) the correction arising from interactions of both sub-systems, 
being proportional to the area (length) and, hence, to N, cannot be neglected. Thus 
the Helmholtz free enegy is not additive and the previous (Guggenheim) discussion 
(which would give (82q /&z2)1 ,~  > 0 for the system studied) is useless. Calculations 
performed in case (6) showed that the derivative ( d 2 q / ~ a 2 ) , , ~  is indeed negative in a 
certain range of D and 1. 

Results obtained in § 2.2 proved that if the width D of the box is variable and 
can be changed independently of the length 1, the system will be unstable for certain 
D and 1 (case (6)). The necessity of changeability of D and independency of D on 
I results from cases ( a )  and ( c ) :  fiistly at fixed D the system is stable (case(a)) and 
secondly at constant ratio LID = J 3 / 2  it is also stable (case ( e ) ) .  The size of domains 
representing unstable states in the l-D diagram depends on external conditions to 
which the system is subjected. Figure 2 shows the domain of unstable states at fixed 
length of the box and controlled force f D .  The case when, instead of the length 1, the 
force f L  is fixed and fD is controlled is shown in figure l (6) .  

The van der Waals-like loop (see figure 3 )  appearing in the hard-disc system in 
the narrow box has its source in restrictions imposed on possible configurations of 
particles by boundary conditions. The main restrictions, that is firstly the condition 
of the same width D along all the box and secondly limited y component of the 
distance of interacting particles, are common for both periodic and hard-wall boundary 
conditions. These restrictions are also substantial (at finite temperatures) for less 
artificial potentials of interactions and in three-dimensional systems. This provides 
the suggestion that the loop may occur in three-dimensional layers. It should not be 
difficult to examine this possibility by performing computer simulations. The existence 
of the loop would also be visible in experiments with latexes (Pieranski 1980) both 
in two-dimensional and three-dimensional cases if particles were between parallel 
lines and plates, respectively. 

In a system containing large planar molecules dispersed among small spherical 
ones the instability might manifest itself as clustering of planar molecules. At small 
external pressure (the systems out of the instability region) the distances of planar 
molecules are almost equal. At higher pressure (the system in the instability region) 
the distances cannot be equal because such a state is thermodynamically unstable. 
There will be two most probable distances between nearest plates: the larger one 
which is equal to the  distance between clusters, and the smaller one which is equal 
to the intermolecular distance in a cluster. The dimensions of clusters should be finite 
because the system is close to being one-dimensional with nearest-neighbour interac- 
tion and the latter does not show any phase transitions (Takahashi 1942). 

After submitting this paper we received a communication (Antonchenko er a1 
1982) about computer simulations of hard-sphere three-dimensional thin layers with 
hard walls. The pressure on the wall shows some oscillations when the width of the 
layer increases (density is taken as constant). It supports our suggestion that the 



A n  instability in a hard-disc system in a narrow box 2203 

instability analysed here may occur in three dimensions and for other boundary 
conditions. Because oscillations (and not only one loop) are observed, one can suspect 
that some (not only two) most probable distances will be observed in the system of 
large planar molecules. 
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